
Int J Theor Phys (2009) 48: 729–742
DOI 10.1007/s10773-008-9849-0

Partial Description of Quantum States

Olivier Brunet

Received: 29 June 2008 / Accepted: 4 September 2008 / Published online: 26 September 2008
© Springer Science+Business Media, LLC 2008

Abstract One of the most central and controversial element of quantum mechanics is the
use of non zero vectors of a Hilbert space (or, more generally, of one dimension subspaces)
for representing the state of a quantum system. In particular, the question whether such a
representation is complete has been debated since almost the early days of quantum me-
chanics.

In this article, we develop an alternate way to formalize knowledge about the state of
quantum systems, based solely on experimentally accessible elements, namely on outcomes
of finite measurements. We introduce what we call partial description which, given a feasi-
ble measurement, indicates some outcomes which are known to be impossible (i.e. known to
have a probability equal to 0 to occur) and hence have to be discarded. Then, we introduce
partial states (which are partial descriptions providing as much information as possible) and
compare this way to describe quantum states to the orthodox one, using vector rays.

Finally, we show that partial states allow to describe quantum states in a strictly more
expressive way that the orthodox description does.

Keywords Quantum logic · Foundations of quantum mechanics · Knowledge theory ·
Partial knowledge

1 Introduction

In the standard formulation of quantum mechanics using the Hilbert framework, a quantum
system is represented by a complex Hilbert space H, in which a state of the system is repre-
sented by a non-zero vector |ϕ〉 or, more generally, by its span C|ϕ〉, as a vector represents
a state up to phase factor.

In particular, let us focus on some elements of the formulation of quantum mechanics
using the Hilbert space framework:
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1. A quantum system S is represented by a complex Hilbert space HS ;
2. A state of S is represented by a unitary vector |ϕ〉 of HS or, more generally, by a vector

ray, i.e. a one-dimensional subspace of HS , corresponding to the span C|ϕ〉 of |ϕ〉;
3. Information about the state of S is obtained through a processus called measurement

which, in terms of Hilbert spaces, is represented by a hermitian operator M on HS , and
which is postulated to work the following way: if, immediately before a measurement M

is applied, the state of a quantum system is |ϕ〉 and if i is an eigenvalue of M and Pi

denotes the orthogonal projection on the eigenspace of M associated to i, then outcome
i will, according to the Born rule, occur with probability:

pi(|ϕ〉) = 〈ϕ|Pi |ϕ〉
〈ϕ|ϕ〉 .

In that case, right after the measurement occurred, the state of the system will be Pi |ϕ〉
(up to a normalization factor, which we do not take into account, since we consider that
quantum states are actually represented by vector rays and not by vectors themselves).

While probabilities play a central role in quantum mechanics, we will try to avoid them
as much as possible in our discussion and, to that respect, we shall retain only one aspect of
their meaning: the probability pi(|ϕ〉) of an outcome i given a state |ϕ〉 indicates whether
such an outcome is possible (in which case the probability is different from 0) or not (the
probability equals 0).

This formulation of quantum mechanics, despite being extremely successfull in its ap-
plications, has been problematic from almost its beginning. These difficulties, symbolized
by the Einstein-Podolsy-Rosen argument [7], come from the use of wave functions, i.e. the
fact that a pure quantum state is represented in the quantum theory by a vector in the corre-
sponding Hilbert space.

Problematic aspects include the question whether such a representation is complete, that
is whether it provides a complete description of the state of a quantum system. If this were
the case, then this would mean that in our description of the world, some fundamental as-
sumptions should be given up, such as determinism (the state of a quantum system does not
in general specify precisely the outcome of a measurement but only the probability to ob-
tain it) or locality (with the possibility of direct and instantaneous influence between distant
objects).

A lot of literature has been devoted to these question with, in particular, the study of the
possibility of some “hidden-variable” theories, where the description of the state of a quan-
tum system is complemented by some extra elements of information. However, some major
results have shown that such hidden variables theories are not possible under reasonable as-
sumptions. The most central ones are the Kochen-Specker theorem [11], Gleason’s theorem
[8] and Bell’s theorem [1, 2].

However, while these theorems show that some ways to solve the problem are impossi-
ble, the situation remains rather unsatisfactory, as illustrated by the never-ending wealth of
publications on the subject.

In the present article, we attempt to provide some new insights regarding these questions
by developing a different approach for representing knowledge about the state of a quantum
system. The key word here is “knowledge”: we deliberately do not try to describe what the
state actually is, but instead we attempt to describe what we do know about a state of a
quantum system. In other words, our formalism is based on the use of actual elements of
information, by which we mean results of actually performable measurement operations. In
the case of quantum mechanics, this corresponds to outcomes of finite measures (we must
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only consider finite ones since one can only manipulate and deal with a finite amount of
information). However, in order to be as generic as possible, we will use the formalism of
orthomodular lattices which constitutes a more general algebraic formalism (one can refer
for instance to [5, 10, 12, 14] for more information).

2 Organization of the Article

We start by defining the entities which will model finite measures. In the Hilbert framework,
this corresponds to the eigenvalues of a hermitian operator with finitely many eigenvalues.
This can be expressed as a maximal collection of mutually orthogonal subspaces of a Hilbert
space which can, more generally, be replaced by elements of an orthomodular lattice. An-
other way to represent such a finite measurement is given by a boolean subalgebra of an
orthomodular lattice, which is the subalgebra spanned by the previous elements.

Next, we define our representation formalism by means of functions which, given a finite
measurement, indicate some outcomes which are ruled out by the experimental setup, that
is which have a probability of 0. However, we do not demand that all outcomes with a zero
probability should be ruled out and, more importantly, we do not demand that our functions
indicate which will be the actual outcome. Such functions will be called partial descriptions,
where the adjective “partial” follows from the fact that they only provide partial information
about the outcome of a measurement.

We then define an equivalent way to represent partial descriptions, using what we call
Sasaki filters, and study some general results concerning the collection of all Sasaki filters
of a given orthomodular lattice. In particular, we show that they form a complete atomic
lattice.

Finally, we focus on the study of Sasaki filters in the case where our orthomodular lattice
is a Hilbert lattice, that is the lattice made of all closed subspaces of a Hilbert space. More
precisely, we will focus on atomic Sasaki filters which we call “partial states”.

If the corresponding Hilbert space is of dimension 2, we show that partial states are such
that they provide a definite answer for every possible measurement, which contrasts deeply
with the situation in orthodox quantum mechanics where a state is represented by a vector
ray which encode the outcome of exactly one possible measurement. In dimension at least 3,
we show two results:

1. quantum states (i.e. one-dimensional subspaces) can be seen partial states,
2. there are partial states which do not correspond to quantum states.

The latter is a very significant result, since it shows that our formalism, which is exclu-
sively based on results of actually performable measurement, permits to consider descrip-
tions of a quantum system which are strictly more expressive than those provided by the
orthodox formalism.

3 Finite Measurements

3.1 Finite Measurements as Finite Collection of Outputs

The basic example of a finite measurement is, in the Hilbert space framework, provided by
hermitian operators with finitely many eigenvalues (i.e. finitely many possible outcomes).
With such a hermitian operator, to each possible outcome can be associated an eigenspace,
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which is a closed subspace of the Hilbert space modelling our quantum system. Moreover,
these eigenspaces are pairwise orthogonal and their sum equals the whole Hilbert space.

Our first definition of a finite measurement, based on elements of an orthomodular lattice,
directly follows from these considerations.

Definition 1 (Finite Measurement) A finite measurement of an orthomodular lattice L is a
finite collection M = {e1, . . . , en} verifying:

1. ∀i, ⊥ < ei, 2. ∀i �= j, ei ≤ ej
⊥, 3. e1 ∨ · · · ∨ en = 	.

Let FinMes(L) denote the collection of finite measurement of L.

Given two finite measurements M and M ′, we say that M is finer than M ′ and denote
this by M ≤FM M ′ if:

∀e ∈ M, ∃f ∈ M ′ : e ≤ f.

It can be easily shown that, as suggested by the notation, ≤FM defines a partial order on
FinMes(L).

Proposition 1 For all M,M ′ ∈ FinMes(L), if M ≤FM M ′, then one has:

∀e ∈ M, ∃ !f ∈ M ′ : e ≤ f.

Proof Since M ≤FM M ′, one only needs to prove the uniqueness of f . But suppose that
there are two distinct elements of M ′, namely f1 and f2, such that e ≤ f1 and e ≤ f2. From
the definition of a finite measurement, one has f1 ≤ f2

⊥ and thus e ≤ f1 ≤ f2
⊥. Combined

with the fact that e ≤ f2, this implies that e = ⊥, which is not possible. �

This proposition suggests to define for all pairs (M,M ′) of finite measurement such that
M ≤FM M ′ a function πM≤M ′ : M → M ′ with maps an element e of M to the unique element
f ∈ M ′ such that e ≤ f .

3.2 Finite Measurements as Finite Boolean Subalgebras

In order to present different approaches to our partial representations of states, we introduce
some notations regarding boolean subalgebras.

Definition 2 Given an orthomodular lattice L, let FBA(L) denote the collection of finite
boolean subalgebras of L.

There is an obvious relation between finite measurements and finite boolean sub-
algebras, since given a finite measurement M , one can define a finite boolean subalgebra
by {∨E |E ⊆ M}. Conversely, given a finite boolean subalgebra, the set of its atoms forms
a finite measurement.

We also define the following projection operator on finite boolean subalgebras, which
will play a role similar to that of πM≤M ′ for elements of FinMes(L):
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Definition 3 Given a finite boolean subalgebra B ∈ FBA(L), we define the projection πB
on B by:

πB : L → B

x �→
∧

{y ∈ B |x ≤ y}.

It is clear from its definition that πB is a closure operator.

4 Partial Descriptions of a Quantum State

As explained in the introduction, our goal is to develop a way to describe (possibly partially)
a quantum state by only using elements corresponding to actual knowledge, that is by results
of actually realizable experiments.

In quantum mechanics, this corresponds to using eigenspaces of hermitian operators or,
equivalently, closed subspaces of the Hilbert space describing our system. More abstractly,
this corresponds to elements of the associated Hilbert lattice.

Our partial descriptions will then be defined as follows: given an actually realizable ex-
periment, that is in our context a finite measurement, a partial description provides infor-
mation about its expected result. Imposing that our description should precisely give the
outcome of any measurement seems an unreasonably strong requirement (it is actually im-
possible, as it follows from results such as the Kochen-Specker theorem or the generalization
presented by the author in [4]. We will develop on this impossibility later in the article). In-
stead, we demand a weaker condition: that, given a finite measurement, it indicates some
outcomes which may occur or, considering the complement, it provides a list of outcomes
which have a probability equal to 0.

It should be remarked at this point that we only impose that those outcomes which are
considered as impossible should have a probability of 0. That means that some outcomes
may be considered as possible even though they have a probability of 0. In other words,
a partial description provides informations about which outcomes will not occur, and not
about which outcomes will.

4.1 Partial Descriptions

Following the previous discussion, we define a partial description as a function d which
associates to each finite measurement M a non-empty subset d(M) ⊆ M . Intuitively, d car-
ries the following data: if measurement M is performed on the quantum system, then the
outcome will be an element of d(M).

Equivalently, in terms of finite boolean subalgebras, a partial description can be defined
on boolean subalgebras as d(B) = ∨

d(MB) where MB is the partial description composed
of the atoms of B. One then has:

d(B) ∈ B and d(B) �= ⊥.

Conversely, d(MB) = {o ∈ atoms(B) |o ≤ d(B)}, so that one can express partial descrip-
tions equivalently in terms of finite measurements or of finite boolean subalgebra. It seems
that no confusion can be made regarding these two ways to consider partial descriptions, so
that in the following, we will denote the two functions the same way.
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In the previous section, we have introduced a partial order relation between partial mea-
surements. In order to reflect this relation on partial descriptions, we add the following
requirement:

∀M ≤FM N, d(N) = {πM≤N(x) |x ∈ d(M)}.
This condition, which may seem to be straightforward, deserves a closer examination. First,
given two finite measures M ≤FM N , if an element e ∈ M is considered as a possible out-
come for M with regards to a partial description d , i.e. if e ∈ d(M), then πM≤N(e) has to be
a possible outcome for N :

M ≤ N ⇒ (∀e ∈ d(M), πM≤N(e) ∈ d(N)).

This can be rewritten has:

{πM≤N(e) | e ∈ d(M)} ⊆ d(N).

However, we require an equality and not just an inclusion. Thus, we also demand that given
an element f of d(N), there has to be an element e ∈ d(M) such that f = πM≤N(e). This
condition is far from being obvious. On the contrary, it seems to us that it reflects an impor-
tant feature of quantum physics: consider a system which, after performing a measurement
M1, has its state lying in an eigenspace E1, and suppose that one performs another mea-
surement M2 compatible with M1 (that is their associated hermitian operators commute).
Without loss of generality, one can consider that every eigenspace of M2 is included in one
eigenspace of M1. In that case, after performing M2, the quantum system will have its state
belong to an eigenspace E2 with E2 ⊆ E1, in even though one cannot, in general, tell which
outcome will be obtained.

This prediction can be done before performing M2 and is a consequence of quantum the-
ory. It is precisely this important property that we try to capture, by saying that for M ≤ N ,
if f ∈ N is a possible outcome, then there has to be a possible e ∈ M such that e ≤ f .

In terms of boolean algebras, this condition can be equivalently expressed as:

∀B1 ⊆ B2, d(B1) = πB1 d(B2).

4.2 Some Technical Results

In the following, given x ∈ L, let [[x]] denote the boolean subalgebra generated by x, that is:

[[x]] = {	;x;x⊥;⊥}.
Similarly, for x ≤ y, let [[x;y]] denote the boolean sub algebra generated by x and y:

[[x;y]] = {	;y;x ∨ y⊥;x⊥;x;y ∧ x⊥;y⊥;⊥}.
These subalgebras are depicted in Fig. 1.

Lemma 2 Let d be a partial description on L and B a finite boolean subalgebra of L, and
let us define x = d(B). One has d([[x]]) = x.

Proof Since [[x]] ⊆ B, one has d([[x]]) = π[[x]]d(B) = π[[x]](x) = x. �

The next proposition provides an alternative way to characterize partial descriptions:
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Fig. 1 Definition of [[x]] and
[[x;y]]

Proposition 3 Two following two properties are equivalent:

∀B1, B2 ∈ FBA(L), B1 ⊆ B2 ⇒ d(B1) = πB1d(B2), (E1)

∀B1, B2 ∈ FBA(L), d(B1) ≤ πB1d(B2). (E2)

Proof Let us first prove that (E2) entails (E1): one has d(B1) ≤ πB1d(B2) and d(B2) ≤
πB2d(B1). But if B1 ⊆ B2, then πB2d(B1) = d(B1) so that:

d(B2) ≤ d(B1) ≤ πB1d(B2).

By applying πB1 , one finally has d(B1) = πB1d(B1) = πB1d(B2).
Conversely, let B1 and B2 in FBA(L) and define x = d(B2) and y = πB1(x). Of course,

x ≤ y. From Lemma 2, d([[x]]) = x and since [[x]] ⊆ [[x;y]], it follows that x = d([[x]]) =
π[[x]]d([[x;y]]). In particular, d([[x;y]]) ≤ x. But since x is an atom of [[x;y]], this implies
that d([[x;y]]) = x. Now, [[y]] ⊆ [[x;y]], so that d([[y]]) = π[[y]]d([[x;y]]) = π[[y]](x) = y.
Finally, one has y ∈ B1, so that [[y]] ⊆ B1 and y = d([[y]]) = π[[y]]d(B1) and one can write
d(B1) ≤ π[[y]]d(B1) = y = πB1d(B2). �

Thus, we have introduced partial descriptions as functions which, given a finite mea-
surement, provide information about which outcome to expect. However, its definition as
a function d mapping a finite measurement M (resp. a finite boolean subalgebra B) to a
non-empty subset d(M) ⊆ M (resp. a non-⊥ element d(B) of B) is only one possible rep-
resentation. In the following, we show that partial descriptions of an orthomodular lattice L
can equivalently be represented by some particular subsets of L which we call Sasaki filters.

4.3 Sasaki Filters

Sasaki filters are based on the use of the operation called “Sasaki projection” which plays an
important role in the field of quantum logic [5, 13]. It is defined as a function mapping two
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elements x and y of an orthomodular lattice to the element (x ∨ y⊥) ∧ y. Intuitively, it cor-
responds to an algebraic generalization to orthomodular lattices of the orthogonal projection
in Hilbert spaces.

Definition 4 Given an orthomodular lattice L, a Sasaki filter is a subset F ⊆ L verifying
the following two conditions:

∀x ∈ F, ∀y ∈ L, x ≤ y ⇒ y ∈ F Upward closure
∀x, y ∈ F, x & y ∈ F &-Stability

where we define the Sasaki projection x & y as (x ∨ y⊥) ∧ y.
Moreover, a Sasaki filter is said to be proper it is does not contain the least element ⊥

of L, i.e. if it is not equal to L.

Proposition 4 Given a partial description d , its image F(d) is a proper Sasaki filter, where:

F(d) = {d(B) | B ∈ FBA(L)}.

Proof First, let us show that for x ∈ F(d) and y ≥ x, one has y ∈ F(d): if x ∈ F(d), then
following Lemma 2, d([[x]]) = x. Now, [[x]] ⊆ [[x;y]] so that d([[x;y]]) ≤ π[[x]]d([[x;y]]) =
d([[x]]) which implies that d([[x;y]]) = x. Finally, d([[y]]) = π[[y]]d([[x;y]]) = π[[y]](x) = y

so that y ∈ F(d).
Now, suppose that x and y are both in F(d) and let us show that x & y = (x ∨ y⊥) ∧ y

is also in F(d): first, it is clear that x ∨ y⊥ ∈ F(d) since x ∈ F(d) and x ≤ x ∨ y⊥. Since
y⊥ ≤ x ∨ y⊥, both y and x ∨ y⊥ belong to B = [[y⊥;x ∨ y⊥]] and one has d(B) ≤ y and
d(B) ≤ x ∨y⊥. This implies that d(B) ≤ x &y = y ∧ (x ∨y⊥) and finally that x &y ∈ F(d).

Finally, it is proper, otherwise one would have d(B) = ⊥ for all B. �

Conversely, we show that given a Sasaki filter, it is possible to define a partial description
in a natural way. This is a consequence of the following proposition, proved in [4]:

Proposition 5 A subset F of an orthomodular lattice L is a Sasaki filter if and only if for
every finite boolean subalgebra B ∈ FBA(L), F ∩ B is a principal filter of B.

Proposition 6 Given a proper Sasaki filter F of L, the function dF which maps every finite
boolean subalgebra B ∈ FBA(L) to the least element of F ∩ B is a partial description on L:

dF (B) = min(F ∩ B).

Proof This follows from the alternate characterization of partial descriptions given in Propo-
sition 3: let B1 and B2 be in FBA(L). Since πB1dF (B2) ∈ B1, it follows directly that
dF (B1) ≤ πB1dF (B2). �

We then show that one can univocally associate a partial description and a proper Sasaki
filter.

Proposition 7 Given a partial description d , one has:

∀B ∈ FBA(L), d(B) = min(F (d) ∩ B).
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Conversely, given a proper Sasaki filter F , one has:

F = {min(F ∩ B) | B ∈ FBA(L)}.

Proof Regarding the first equality, let d ′ be defined as d ′(B) = min(F (d) ∩ B). Since,
d(B) ∈ F(d) ∩ B, it follows that d ′(B) ≤ d(B). Conversely, for all x in F(d) ∩ B, one
has d(B) ≤ x so that d(B) ≤ d ′(B). Thus, d ′ = d .

Now, let F ′ = {min(F ∩ B) | B ∈ FBA(L)}. Let x be in F ′. There exists a B such that
x = min(F ∩ B), so that x ∈ F ∩ B and x ∈ F . This shows that F ′ ⊆ F . Conversely, let x

be in F . One has x = min(F ∩ [[x]]) so that x ∈ F ′. This shows that F ⊆ F ′ and finally that
F = F ′. �

Thus, we have shown that partial description can be represented by proper Sasaki filters.
In the following, we will use this representation to investigate some properties of the set of
partial descriptions of an orthomodular lattice.

4.4 Some Properties of the Set of Sasaki Filters

Let SF(L) denote the collection of all Sasaki filters of an orthomodular lattice L and
SF�(L) = SF(L) \ {L} the collection of its proper Sasaki filters. Since we have shown that
Sasaki filters could serve as an equivalent formulation for partial states, it is interesting to
study the structure of SF(L). We give it the structure of a poset by using the reverse inclusion
relation:

F1 ≤ F2 ⇔ F2 ⊆ F1.

In the following, we will prove some lattice-theory properties of SF(L). We invite the
reader to refer to classical lattice theory textbooks for more information, such as [3, 6, 9].

Proposition 8 SF(L) is a bounded poset.

Proof It is clear that it admits {	} as its greatest element, and L as its least element. �

Proposition 9 SF(L) is a complete lattice.

Proof Given a collection {Fi}i∈I of Sasaki filters, let F∨ denotes their intersection:

F∨ =
⋂

i∈I

Fi

and let us prove that F∨ is the join of {Fi}i∈I in SF(L):

1. F∨ is in SF(L), since upward closure and &-stability are preserved by arbitrary intersec-
tion.

2. For all i ∈ I , one has F∨ ⊆ Fi , that is Fi ≤ F∨.
3. Let G be in SF(L), one has:

∀i ∈ I, Fi ≤ G ⇔ ∀i ∈ I, G ⊆ Fi

⇔ G ⊆
⋂

{Fi}i∈I

⇔ F∨ ≤ G.
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Thus, we have shown that any collection {Fi}i∈I of Sasaki filters has a join defined as:

∨
{Fi}i∈I =

⋂
{Fi}i∈I .

Moreover, since SF(L) has a least element (which is L), it is possible to define a meet
operation the usual way by:

∧
{Fi}i∈I =

∨
{G ∈ SF(L) | ∀i ∈ I , G ≤ Fi}

=
⋂

{G ∈ SF(L) | ∀i ∈ I , Fi ⊆ G}.

Thus, 〈SF(L),≤,∨,∧〉 is a complete lattice. �

Proposition 10 SF(L) is atomic.

Proof Given a Sasaki filter F , let {Fi}i∈I be a maximal chain of SF�(L) containing F , and
define:

F∞ =
⋃

{Fi}i∈I .

It is clear that F∞ is upward closed. It is also &-stable: for x, y ∈ ⋃{Fi}i∈I , there exists an
index i(x, y) such that x, y ∈ Fi(x,y) so that x & y ∈ Fi(x,y) and finally, x & y ∈ F∞. Thus,
F∞ is a Sasaki filter.

By maximality of the chain, it is either the least element of SF(L), i.e. L itself, or an
atom of SF(L), in which case it does not contain ⊥. But since for all i, one has ⊥ �∈ Fi , it
follows that ⊥ �∈ F∞, so that F∞ is an atom of SF(L), and it verifies F∞ ≤ F . �

Proposition 11 The application x �→ x↑ = {y ∈ L |x ≤ y} is an order- and join-preserving
injection of L in SF(L).

Proof It is routine to show that for x ∈ L, x↑ ∈ SF(L). Moreover, x �→ x↑ is clearly injective
and order-preserving. It is also join-preserving since:

(x ∨ y)↑ = {z |x ∨ y ≤ z} = {z |x ≤ z and y ≤ z}
= {z |x ≤ z} ∩ {z |y ≤ z} = {z |x ≤ z} ∨ {z |y ≤ z}
= x↑ ∨ y↑. �

It should be remarked that it is, in general, not meet-preserving.
We summarize all theses results in the following theorem.

Theorem 12 Given an orthomodular lattice L, the collection SF(L) of its Sasaki filters
ordered by reverse-inclusion is an complete atomic lattice.

Moreover, the application x �→ x↑ = {y ∈ L |x ≤ y} is an injection of L in SF(L) which
is order-, meet- but not join-preserving.

4.5 Quantum States and Partial Descriptions

In the canonical quantum mechanics formalism, a quantum system is represented by a
Hilbert space H and a quantum state is represented by a non-zero vector |ϕ〉 of H. More
precisely, since a quantum state is given up to a phase factor, a quantum state is represented
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by the span C|ϕ〉 of |ϕ〉 which is an atom of the associated Hilbert lattice L H . Since this
formulation of quantum mechanics is supposed to be complete, such an description encodes
a maximal amount of information about the state of the system and it is not possible to have
a strictly more informative description.

However, we have seen in our study that the collection SF�(L H) of all partial descriptions
(or equivalently, of all proper Sasaki filters) of L H also possesses extremal elements: its
atoms which, from now on, we will call partial states. The atomicity of SF(L H) shows that
for any partial description, one can find a partial state below it.

In this context, a question which arises naturally is how do these two notions of ex-
tremal description, these two notions of state (quantum states and partial states) compare.
Are quantum states some sort of partial states? If not, can partial descriptions be seen as
approximations of quantum states? In the next section, we will study this question.

5 Hilbert Lattices

In the following, H will denote a Hilbert space, and L H the associated Hilbert lattice, i.e. the
lattice made of the closed subspaces of H, partially ordered by inclusion. It is well known
that L H is an orthomodular lattice.

5.1 In Dimension 2

We first study the partial states of L H where H is a Hilbert space of dimension 2. This
situation is extremely important in quantum physics and more particularly in the fields of
quantum information and quantum computation, since qubits are represented by vectors
in C2.

Proposition 13 Let a and b be two one-dimensional subspaces of H. Equivalently, a and b

are atoms of L H . One has either a = b⊥, in which case a & b = ⊥, or a & b = b.

Proof If a = b⊥, then a & b = b ∧ (a ∨ b⊥) = b ∧ b⊥ = ⊥. Otherwise, if a �= b⊥, then
a ∨ b⊥ = 	 and a & b = b ∧ 	 = b. �

Theorem 14 A partial state of L H is a upward-closed subset F of L H which contains
exactly one element of each pair of mutually orthogonal atoms of L H .

Proof From Proposition 13, such a subset F is clearly a Sasaki filter: given a and b in F , if
neither a = 	 nor b = 	, then a & b = b since a �= b⊥, so that F is &-stable.

Moreover, it is atomic since it is not possible find a proper Sasaki filter F ′ such that
F ′ < F : if such a F ′ existed, let a be in F ′ \ F . Since a has to be an atom, either a belongs
to F , which is impossible since a ∈ F ′ \ F , or a⊥ belongs to F which is also impossible
since F ′ is proper. �

This theorem shows that, contrary to quantum states, partial states in dimension 2 are
such that they carry enough information for telling the outcome of any performable mea-
surement on it: a partial state describing a qubit would encode the result of the measurement
of it in any direction.

This situation is extremely different from that of a quantum state which, as we leave
probabilities aside, indicates the exact result of only one measurement. Not only quantum
states cannot be regarded as partial states, but partial states are infinitely more informative
than quantum states.
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5.2 In Dimension 3 and More

However, one can argue that the previous result is not extremely interesting, since a qubit or
any system described by a Hilbert space of dimension 2 is actually part of a bigger system,
described by a Hilbert space of higher dimension, that is at least 3. And 3 does precisely
correspond to the least dimension in which both the Kochen-Specker theorem and Gleason’s
theorem hold [8, 11].

5.2.1 Partial States and the Kochen-Specker Theorem

In [4], the author has studied the relation that existed between partial descriptions (referred
to as a priori knowledge) and the Kochen-Specker theorem which can be stated in terms of
proper Sasaki filters as:

Theorem 15 Given a Hilbert space H of dimension at least 3, there is no proper Sasaki
filter F of L H which contains exactly one element of every maximal collection of mutually
orthogonal atoms.

However, the formulation in terms of proper Sasaki filters also provides a generalization
of the result. Quoting Theorem 7 in [4], we have:

Theorem 16 Given a Hilbert space H of dimension at least 3 and an atom a of L H , if
proper Sasaki filter F of L H contains a, then F = a↑.

This result shows that, contrary to what happened in dimension 2, given an atom a of L,
the Sasaki filter a↑ is a partial state. Stated another way, to a quantum state C|x〉 can be
associated a partial state (C|x〉)↑ which we call a principal partial state.

The next question is now: Are there partial states which are not principal? Are there
partial states which do not correspond to quantum states? The next subsection will give a
positive answer to this question.

5.2.2 Non-principal Partial States

Let H be a Hilbert lattice of dimension at least 3 and let {|ei〉}i∈I be an orthomodular basis
of H. We suppose that I has a particular element, denoted 0. Moreover, we define a set
{|fi〉}i∈I of unitary vectors of H by:

|f0〉 = |e0〉, ∀i ∈ I \ {0}, |fi〉 = 1√
2
(|e0〉 + |ei〉).

It is easy to verify that {|fi〉}i∈I is a collection of mutually non-orthogonal vectors, since:

∀i ∈ I \ {0}, 〈fi |f0〉 = 1√
2
, ∀i, j ∈ I \ {0}, i �= j ⇒ 〈fi |fj 〉 = 1

2
.

Now, let us define Gi = (C|fi〉)⊥ = {x ∈ H | 〈fi |x〉 = 0}. One has:

Proposition 17 The set F = {	} ∪ ⋃{Gi}i∈I is a Sasaki filter of L H and there is no princi-
pal maximal Sasaki filter of L H containing F .
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Proof The fact that F is a Sasaki filter follows from the fact that the elements of {|fi〉}i∈I

are mutually non-orthogonal. As a consequence, the elements of {Gi}i∈I are mutually in-
compatible so that if i �= j , then Gi & Gj = Gj .

Now, suppose that there is an element |x〉 ∈ H \ {0} such that F ⊆ (C|x〉)↑. This means
that for all i in I , one has |x〉 ∈ Gi or equivalently that ∀i ∈ I , 〈fi |x〉 = 0. In particular,
〈e0|x〉 = 〈f0|x〉 = 0 and for i in I \ {0}, one has:

〈ei |x〉 = 〈√2fi − e0|x〉 = √
2〈fi |x〉 − 〈e0|x〉 = 0.

This leads to a contradiction, since we assumed that |x〉 �= 0, and as the span of our ortho-
normal basis {ei}i∈I is dense in H, one has ∀i, 〈ei |x〉 = 0 so that |x〉 = 0. �

Theorem 18 Given a Hilbert lattice H of dimension at least 3, there are partial states of
L H which are not principal.

Proof This is a direct consequence of Propositions 10 and 17. �

6 Conclusion and Perspectives

In our attempt to develop a formalism for representing knowledge about the state of a quan-
tum system by solely using actual results of measurements, we have introduced partial de-
scriptions which, given a performable measurement, provide information about the expected
outcome by discarding some values which are known to be impossible.

In a more general and algebraic approach, we have defined this formalism by using or-
thomodular lattices (which are a generalization of the collection of closed subspaces of a
Hilbert space) and have shown that partial descriptions could be represented by Sasaki fil-
ters. Then, by studying some structural properties of the collection of all Sasaki filters of
a given orthomodular lattice, we have shown in particular that it forms an atomic complete
lattice. The atomicity is especially interesting, as it shows the existence of “maximal” par-
tial descriptions (maximal in the sense that it is not possible to find a partial description
providing strictly more information) which we call partial states together with the fact that
any partial description can be seen as an approximation of a partial state (or, stated the other
way, that any partial description can be refined into a partial state).

Finally, by comparing partial states to quantum states (represented by 1-dimensional sub-
spaces of a Hilbert space or, more algebraically, by atoms of an orthomodular lattice), we
have shown that, in dimension 2 or more (even though the situation is different in dimen-
sion 2 and in greater dimension), the formalism of partial states is strictly more expressive
that the orthodox notion of quantum state.

In this situation, what role could partial descriptions and partial states play in quantum
mechanics? Do these mathematical constructions have any meaning or legitimacy?

From an operational point of view, the basic components of partial descriptions are out-
comes of feasible measurements. However, partial descriptions provide information about
any measurements, even non-compatible ones. Now, since it is not possible to perform non-
compatible measurements, this means that, even if partial descriptions do correspond to
some “elements of reality”, they would not be entirely accessible experimentally.

More importantly, should one consider all partial descriptions and all partial states as
legitimate, or should one only consider some of them? Following from the study of the
structure of the collection of all Sasaki filters of a given orthomodular lattice, it is clear that
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considering a Hilbert space H and the associated Hilbert lattice L H , any partial state of the
form a↑ = {x ∈ L H |a ≤ x} with a an atom of L H should be considered, as it constitutes a
partial description corresponding to an orthodox quantum state. The question which follows
is then, are there other partial descriptions which should be considered as legitimate?
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